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genuinely novel insights into depression’s neurobiological 
correlates. Methods to capture and artifi cially stimulate 
or inhibit the electrophysiological activity of individual 
types of neurons in the brain in vivo have added new 
dimensions to available approaches, permitting us for 
the fi rst time to describe and manipulate the previously 
enigmatic neurophysiological correlates of concepts such 
as “reward” and “anxiety.” Coupled with experimental 
advances in treatment, these developments suggest we 
can anticipate that developing tomorrow’s therapies will 
no longer rely solely on modifi cations of existing agents 
that were discovered by serendipity six decades ago. Our 
aim in this review is to provide a framework to interpret 
continuing advances in the basic science of depression.

Insights From Human Studies

While animal experiments offer a unique opportunity 
to test cellular and molecular hypotheses, human clinical 
investigation continues to provide insights about depres-
sion that are inaccessible in animals. Postmortem studies 
designed to capture the neuropathology of depression 
have largely focused on certain cortical and hippocam-
pal regions, which show a number of subtle differences, 
such as smaller neuronal size, fewer glial cells, shorter 
dendrites, and lower levels of trophic factors (5–7). These 
results agree with evidence of volume loss in these regions 
as shown by structural magnetic resonance imaging (MRI) 

Understanding the molecular mechanisms underly-
ing major depressive disorder is essential because one in 
six individuals in the United States will develop depres-
sive symptoms requiring treatment (1), depression sig-
nifi cantly complicates chronic illness (2), and depression 
is the leading cause of disability worldwide (3). However, 
exploring the molecular underpinnings of depression 
brings substantial challenges. In contrast to the clear-cut 
phenotypes encountered in substance dependence or 
obesity, the strictest guidelines for diagnosing depression 
include elements that are diffi cult to capture in animal 
models, e.g., “insomnia or hypersomnia nearly every day” 
(4). Unlike Parkinson’s or Alzheimer’s disease, depression 
lacks any clear consensus neuropathology, rare familial 
genetic causes, or highly penetrant vulnerability genes, 
providing no obvious starting points for molecular inves-
tigations. In spite of its heritability, the search for genetic 
causes has not been successful to date. Consequently, 
progress in understanding the molecular biology of 
depression has been slow, particularly in comparison to 
other multifactorial syndromes, such as type 2 diabetes 
mellitus and cancer. Thus, the burden of depression will 
continue to increase (3), especially during the extra years 
of life gained from improved outcomes in cardiovascular 
disease, cancer, and other domains.

Nevertheless, it is an exciting time to be a depression 
researcher. Advances in molecular tools and ongoing 
improvements in behavioral techniques have allowed for 

(Am J Psychiatry 2010; 167:1305–1320)

Vaishnav Krishnan, M.D., Ph.D.

Eric J. Nestler, M.D., Ph.D.

 Major depressive disorder is a heritable 
psychiatric syndrome that appears to be 
associated with subtle cellular and mo-
lecular alterations in a complex neural 
network. The affected brain regions dis-
play dynamic neuroplastic adaptations 
to endocrine and immunologic stimuli 
arising from within and outside the CNS. 
Depression’s clinical and etiological het-
erogeneity adds a third level of com-
plexity, implicating different pathophysi-
ological mechanisms in different patients 
with the same DSM diagnosis. Current 

pharmacological antidepressant treat-
ments improve depressive symptoms 
through complex mechanisms that are 
themselves incompletely understood. 
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guanine nucleotide-binding protein 3) or MTHFR (for 
methylene tetrahydrofolate reductase), have survived 
stringent statistical requirements of meta-analyses. While 
their odds ratios are too weak for diagnostics or risk strati-
fi cation, these and other genes may offer new clues into 
disease pathophysiology (28). Genome-wide association 
studies are inherently unbiased, as they currently can 
simultaneously examine up to one million SNPs. While 
such trials have identifi ed SNPs in previously unappre-
ciated molecules, such as Piccolo (a presynaptic nerve 
terminal protein) or GRM7 (metabotropic glutamate 
receptor 7), these fi ndings are themselves of relatively 
poor statistical signifi cance and are not replicated across 
studies (27). Several explanations have been put forth, 
including vague DSM diagnostic criteria, considerable 
disease heterogeneity, and the relatively potent contri-
bution of ongoing life stressors and epigenetic plasticity. 
We remain hopeful that within the coming decade, that 
newer technologies will have greater success and repli-
cability, including “whole-exome” studies (which exclude 
noncoding regions, representing 99% of the genome) as 
well as whole-genome sequencing. Of course, a key unan-
swered question is whether these genetic data should be 
correlated with DSM diagnostic categories, more broadly 
across several DSM diagnoses, or with more carefully 
defi ned behavioral, endocrine, neurochemical, or neuro-
imaging phenotypes. Identifying such genes will be hugely 
benefi cial for the generation of bona fi de animal models 
of depression.

An important insight gained from everyday clini-
cal practice is the observation that monoamine reup-
take inhibitors and other modulators of monoaminergic 
function improve symptoms in about 50% of depressed 
patients and produce a remission in 30%–40% of patients 
(29). These data illustrate the tremendous genetic hetero-
geneity of treatment response, and efforts are under way to 
identify pharmacogenetic predictors of a favorable treat-
ment response to monoaminergic agents (30, 31). Since 
monoamine enhancers improve depressive symptoms, 
it was suggested historically that depression is caused 
by defi cits in monoaminergic transmission. This “mono-
amine hypothesis” continues to be a prominent preoc-
cupation of the fi eld. However, after more than a decade 
of PET studies (positioned aptly to quantitatively mea-
sure receptor and transporter numbers and occupancy) 
(32), monoamine depletion studies (which transiently 
and experimentally reduce brain monoamine levels) 
(33), and genetic association analyses examining poly-
morphisms in monoaminergic genes (28, 34, 35), there is 
little evidence to implicate true defi cits in serotonergic, 
noradrenergic, or dopaminergic neurotransmission in 
the pathophysiology of depression. This is not surpris-
ing, as there is no a priori reason that the mechanism of 
action of a treatment is the opposite of disease patho-
physiology (36). Thus, currently available agents likely 
restore mood by modulating distinct processes that are 

(8, 9). Molecular techniques such as DNA microarray pro-
fi ling have been applied to specifi c regions, including the 
amygdala and locus ceruleus, to document gene expres-
sion alterations associated with depression (10, 11). Within 
the coming years, we can hope for a more comprehen-
sive list of depression’s neuropathological changes, par-
ticularly with the advent of centralized brain collections, 
which are able to furnish larger samples while simultane-
ously excluding traditional sources of confound, such as 
suicide, comorbid substance abuse, and a bipolar diag-
nosis. When elegantly combined with animal models or 
neuroimaging data, these postmortem depression studies 
provide the opportunity to demonstrate true causal rela-
tionships (12–15).

Functional MRI and positron emission tomography 
(PET) have shown how depressive behavior can be cor-
related with hypermetabolism of the subgenual cingulate 
cortex and amygdala (16) as well as hypometabolism of 
the dorsal prefrontal cortex and striatal regions (8). In an 
attempt to integrate these anatomic data, there have been 
several formulations of a “depression circuit” (Figure 1). 
After years of largely empirical reports, we now approach 
the possibility of testing and refi ning these circuit models 
in humans, thanks to recent experimental interventional 
advances such as deep brain stimulation and repetitive 
transcranial magnetic stimulation (rTMS). For cases of 
treatment-resistant depression, deep brain stimulation 
has been successfully applied to the subgenual cingulate 
cortex (18, 19) and the ventral striatum/nucleus accum-
bens (20–22) without known permanent adverse effects 
in the subjects studied to date. Refi nements in stimula-
tion variables for rTMS applied to the dorsolateral pre-
frontal cortex have signifi cantly improved the magnitude 
and endurance of observed antidepressant effects (23). 
While these techniques are safer than earlier rudimentary 
approaches to “psychosurgery,” the precise mechanisms 
by which deep brain stimulation and rTMS act are still 
incompletely understood. It is not known, for example, 
whether the local effects of deep brain stimulation work 
through excitation or inhibition or effects on fi bers of 
passage (24). Recently developed optogenetic tools make 
it possible to activate or inhibit particular neuronal cell 
types and/or their terminals within defi ned brain regions 
(25), allowing for a deeper exploration of the neurophysi-
ological mechanisms underlying the therapeutic effects of 
deep brain stimulation. Thus, as deep brain stimulation 
and rTMS are scaled down and characterized in laboratory 
animals, one can expect clinical improvements in patient 
selection, technique, and localization.

With heritability estimates of approximately 40% 
(26), two main techniques have been utilized to explore 
the genetics of depression. Candidate genes, identifi ed 
through an investigator’s best guess about etiological 
mechanisms, have been examined through linkage and 
genetic association studies (27). Single nucleotide poly-
morphisms (SNPs) in specifi c genes, such as GNB3 (for 
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FIGURE 1. Two Heuristic Formulations of Neural “Depression Circuits”a

a Part A represents an amygdala-centric circuit (8) largely inspired by structural brain imaging and postmortem studies. According to this 
model, the emotional symptoms of depression can be brought about by functional impairment (“lesion-like” effects) of the striatum or 
the prefrontal and orbital prefrontal cortex (and/or their associated white matter tracts), resulting in disinhibition of the amygdala and 
downstream structures. Alternatively, they can arise from functional hypersensitivity of the amygdala (pink arrows), which gives rise to 
dysregulation of prefrontal cortical structures. (Part A used by permission from Elsevier.) Part B represents a circuit model (17) generated 
with a greater emphasis on functional imaging results. The main nodes consist of four clusters of brain regions with strong anatomical con-
nections to each other. This model compartmentalizes depressive endophenotypes into exteroceptive (cognitive), interoceptive (visceral-
motor), mood-regulating, and mood-monitoring functions. Both formulations should be seen as offering a simplifi ed heuristic framework 
for further research into depression’s diagnosis, pathophysiology, and treatment. They do not convey the cellular and molecular hetero-
geneity of each node within the circuit (for example, the ventral tegmental area comprises several types of dopaminergic and GABA-ergic 
neurons defi ned by differences in connectivity and receptor expression). (Part B used by permission of the American Society for Clinical 
Investigation.)
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unrelated to the primary pathology of depression, just as 
diuretics improve the symptoms of congestive heart fail-
ure without affecting cardiac myocytes directly. Similarly, 
the success of intravenous ketamine in rapidly alleviat-
ing depressive symptoms in treatment-resistant depres-
sion (37) has prompted an exploration of the cellular and 
neuroanatomical substrates for ketamine’s actions and 
the search for ketamine-like therapies that lack psychoto-
mimetic side effects. However, formulating a “glutama-
tergic hypothesis of depression” is grossly simplistic and 
only fuels inaccurate public misconceptions of depres-
sion’s “chemical imbalance,” particularly since more than 
one-half of all neurons in the brain utilize glutamate as a 
neurotransmitter.

Animal Models of Depression

The design, application, and relative strengths and 
limitations of depression models have been discussed 
in several reviews (1, 38). Without defi nitive knowledge 
of pathophysiological processes, these models are often 
evaluated for their face, construct, and pharmacologi-
cal validity (1), as are models of other clinically defi ned 
neuropsychiatric syndromes, such as autism and schizo-
phrenia. Face validity is a model’s symptomatic homol-
ogy to human depression. Today’s depression models 
achieve this goal to a considerable extent: rodent and 
primate models have successfully recapitulated states of 
social withdrawal, hypophagia and weight loss, anhedo-
nia, circadian changes, and abnormalities of the HPA axis, 
although these phenotypes are generally transient and not 
all present simultaneously.

The more challenging construct validity is the ability of a 
model to replicate etiological factors implicated in depres-
sion, which are themselves not entirely understood. Most 
paradigms use some form of stress (of a physical or a psy-
chosocial form), given the known association between 
independent stressful life events and depressive episodes 
(39). More recently, a greater emphasis has been placed 
on replicating both environmental risk factors (such as 
stressful life events) and genetic risk factors (although 
these remain largely unknown) in the same model.

Pharmacological or predictive validity is met when a 
model’s depression-like behaviors are reversed by cur-
rently available antidepressant modalities, and several 
models in use today display this type of predictability 
with the therapeutic delay that characterizes antidepres-
sant responses in humans. However, given that all avail-
able pharmacological agents are monoamine modulators 
and only a minority of patients experience remission after 
fi rst-line therapies (29), the requirement for pharmacolog-
ical reversibility is perhaps desirable but not mandatory. 
Since the mechanisms underlying the delayed antidepres-
sant effects of medication and nonmedication treatments 
(exercise, electroconvulsive seizures, etc.) remain largely 
unknown, animal models have been employed to dissect 
these mechanisms (i.e., models of antidepressant action), 

with the caveat that these therapies are applied to labora-
tory animals that generally lack depression-like behavior 
or any particular genetic vulnerability to depression.

A potential fourth criterion that has received consid-
erably less attention is pathological validity, whereby 
depression-related physiological, molecular, and cellular 
abnormalities in animals are validated by demonstrat-
ing identical changes in postmortem brain samples from 
depressed humans. This is a genuinely diffi cult require-
ment but has been gaining increasing popularity with the 
more widespread access to postmortem samples (12–15). 
Ideally, this criterion might be better addressed through 
functional imaging studies with depressed patients, but 
this will require substantial improvements in molecular 
imaging capabilities.

From an evolutionary perspective, depression may be 
an analogue of the “involuntary defeat strategy,” occurring 
when an animal perceives defeat in a hierarchical struggle 
for resources (40). Hyperarousal, psychomotor retarda-
tion, reduced motivation, and sleep alterations in the set-
ting of losing are postulated to have an adaptive advantage 
in that they serve to protect losers from further attack and 
focus cognitive resources on planning ways out of com-
plex social problems (41, 42). Most behavioral endpoints 
in depression models aim to quantitatively assay some 
type of experimentally induced defeat or despair (Figure 
2), even though this aspect of mammalian behavior is 
likely physiological (i.e., adaptive) rather than pathologi-
cal. Additionally, while despair behavior is often extrapo-
lated as being depression-like, it is clearly a huge inference 
to make from rodent models, and most stressors also 
produce anxiety-like changes that are exaggerated mani-
festations of the fi ght-or-fl ight response (reduced explo-
ration, freezing, hyperthermia, HPA axis activation, etc.). 
For example, repeated social subordination in mice (social 
defeat) leads to a long-lasting phenotype of reduced social 
interaction with other mice. This impairment in sociabil-
ity can be interpreted as a reduced motivation to interact 
(an abnormality of reward) or as a heightened avoidance 
of novel social stimuli (a pathological anxiety response). 
Distinguishing between these alternative hypotheses is 
diffi cult and may even be irrelevant, particularly given the 
poorly defi ned neurobiological distinctions between anxi-
ety and depression and their highly variable clinical pre-
sentation. In either case, the model employs a naturalistic 
social-stress-induced behavior that is quantifi able and 
amenable to experimental manipulation (12–14, 43–52).

The forced-swim and tail-suspension tests are the 
simplest and most widely used models of depression 
and antidepressant action. While these approaches have 
been rightly criticized for involving acute stress and 
acute antidepressant responses, they have permitted the 
rapid behavioral screening of novel chemical antidepres-
sants and the phenotyping of genetically altered mutant 
mice. In certain instances, they have directed the fi eld 
toward fundamentally novel molecular hypotheses. For 
example, an antidepressant-like phenotype in the forced-
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values of using rats and mice to study depression are 1) the 
ability to describe and characterize neuroplasticity with 
exquisite spatial and temporal precision and 2) the oppor-
tunity to utilize molecular innovations to demonstrate the 
causative effects of those neuroplastic changes on assays 
of depression- and antidepressant-like behavior.

Neurogenic and Neurotrophic 
Theories

The fi rst description of continually dividing neuronal 
progenitors in the adult mammalian brain offered the 
promise of solutions for a host of neurodegenerative dis-
orders that so far lack defi nitive cures (57). Exploring the 
physiologic role of endogenous neurogenesis, particularly 
that which occurs in the hippocampal dentate gyrus, has 
important relevance to the study of psychiatric disease 
(58). The journey from a hippocampal stem cell in the 
subgranular zone to a mature dentate gyrus granule cell 

swim test (decreased immobility and greater struggling 
or swimming) was observed in mice defi cient in acid-
sensing ion channel 1a (ASIC-1a), a pH-sensitive ion 
channel expressed in the brain (53). Subsequent studies 
have shown that ASIC-1a expressed in the amygdala par-
ticipates in eliciting a fear response to a variety of aver-
sive cues culminating in acidemia (53, 54), implicating 
inhibitors of ASIC-1a (a previously unappreciated target) 
as potential therapeutics against anxiety and depressive 
disorders. Analogous approaches have identifi ed several 
other novel molecular targets, including p11 (a calcium-
binding chaperone molecule that promotes serotonin 
signaling through the serotonin 1B receptor subtype 
[15]), TREK-1 (a distinct type of potassium channel that 
is enriched in depression-related limbic brain regions [55, 
56]), ghrelin (a stomach-derived endocrine mediator of 
energy homeostasis [46]), and many others.

In the following sections, we focus on neurobiological 
themes that exhibit therapeutic promise. The two main 

Immobility Sociability

Exploration Anhedonia

Helplessness

FIGURE 2. Common Behavioral Endpoints in Rodent Depression Studiesa

a These quantitative and automatable behavioral endpoints are widely used in experiments with rats or mice as measures of depression-relat-
ed behavior. They can be employed following chronic stress paradigms such as social defeat, to phenotype genetic mutant mice, to validate 
antidepressant treatments, or to provide tools for localizing genomic mediators of complex behaviors in quantitative trait locus analyses. 
The most popular endpoint is immobility, which is interpreted as a measure of behavioral despair or freezing in response to an inescapable 
stressor, such as forced swimming or tail suspension. A closely related endpoint is helplessness, which can be inferred through the learned 
helplessness paradigm, where animals receive a series of inescapable electrical shocks in one compartment and on subsequent testing days 
display a defi cit in their motivation to avoid these shocks when a clear escape route is provided. Anhedonia in mice can be measured in sev-
eral ways, including simple measures of preference (measuring the relative preference for palatable rewards such as a dilute sucrose solution 
or a high-fat chow), quantitative indices of sexual behavior such as latency to mount a receptive female, and intracranial self-stimulation, 
where one directly measures motivation (lever pressing) to receive a highly rewarding electrical shock. Reductions in exploratory behavior 
are often interpreted as elevations in anxiety and can be quantifi ed by measuring the amount of time spent in aversive portions of a fi eld 
of exploration, such as the open arms of an elevated plus-shaped maze. One can also measure defi cits in sociability, which may refl ect im-
pairments in natural reward or social anxiety. These assays have been employed in stress paradigms, mutant mouse models, and models of 
secondary depression, such as that seen, for example, with obesity, breast cancer, or chronic interferon treatment. A common practice is to 
generate behavioral profi les by employing a broad battery of these tests following stress, genetic, or pharmacological manipulations; these 
behavioral profi les can also include changes in weight and appetite, as well as defi cits in self-grooming (deteriorations in fur coat).
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depression, including fi broblast growth factor, vascular 
endothelial growth factor, and nonacronymic VGF (1). 
Through modulation of their levels and downstream sig-
naling, these growth factors appear to transduce stressors 
into lowered rates of adult hippocampal neurogenesis, 
atrophic changes, and impaired synaptic plasticity of hip-
pocampal neurons, which might (in theory) explain the 
cognitive impairments and hippocampal atrophy seen in 
depression (67).

Translating these BDNF fi ndings may not be straight-
forward. Aside from the challenges associated with syn-
thesizing a specifi c agonist of BDNF, enhancing BDNF 
function in the nucleus accumbens and amygdala can 
have detrimental effects on measures of anhedonia, anxi-
ety, and social interaction in rodents (1, 71). A naturally 
occurring SNP in BDNF (G196A, Val66Met) results in dra-
matic alterations in intracellular traffi cking of BDNF and 
its activity-dependent release (1). Meta-analyses show 
that while the Met allele marginally increases the risk for 
depression in men but not women, it is also associated 
with a better antidepressant response (74, 75). A hippo-
campus-specifi c increase in BDNF activity may improve 
certain cognitive symptoms of depression and facili-
tate hippocampal neurogenesis (60). While we possess 
the technology to deliver specifi c genes into the human 
brain through viral vectors (76), the benefi cial effects of 
BDNF would have to outweigh potential negative effects, 
i.e., lower seizure threshold, altered indices of learn-
ing and memory, and increased likelihood of malignant 
transformation (77, 78). Nevertheless, understanding the 
roles of these growth factors in depression’s pathophysi-
ology remains an extremely active area of research, with 
an emphasis now placed on extrahippocampal trophic 
signaling and exploring downstream signaling pathways 
(79), which may have greater pharmaceutical application.

Contribution of Epigenetic 
Modifi cations

Biological theories of depression’s etiology have tradi-
tionally focused on the interplay between genetic risks and 
environmental/social hazards, with gene-environment 
interactions invoked to explain how relatively weak genetic 
vulnerabilities combined with the right environmental trig-
gers may lead to signifi cant psychiatric impairment (80). 
However, the signifi cant discordance of depression between 
monozygotic twins (who often share the same environment 
as well as genes), the remarkably slow progress in identi-
fying genetic risk factors, and depression’s twofold female 
predominance suggest the presence of a third, nongenetic 
and nonenvironmental component to variability (81). Epi-
genetic modifi cations have been implicated as a signifi cant 
contributor to this third source of variability and are broadly 
divided into those that modify DNA directly (e.g., DNA 
methylation), those that alter histones (e.g., histone acety-
lation or methylation), and those that involve noncoding 

neuron with appropriate synaptic connections occurs in 
stages defi ned by specifi c cellular markers, with the rates 
of proliferation and survival modulated by numerous 
stimuli. Unpredictable stressors, glucocorticoids, drugs 
of abuse, and high-energy electromagnetic radiation 
negatively infl uence this process, while antidepressants, 
voluntary exercise, and environmental enrichment accel-
erate adult hippocampal neurogenesis (59).

Laboratory rodents have been used extensively to 
explore the regulation of these new hippocampal neurons 
and their contribution to depression-related phenotypes. 
In models of antidepressant action, cranial irradiation 
(which severely impairs the mitotic potential of hippo-
campal stem cells) and aging (another robust negative 
regulator of adult hippocampal neurogenesis) impair 
some but not all of the effects of monoamine reuptake 
inhibitors (60–63), suggesting that these agents may func-
tion through neurogenesis-dependent and -independent 
processes (64). Clearly, only the actions of antidepressants 
that involve hippocampal circuitry could be mediated 
through enhanced neurogenesis. Indeed, one study was 
able to demonstrate the antidepressant effect of a direct 
intracerebral infusion of bone-marrow-derived mesen-
chymal stem cells, which both themselves transform into 
neurons and generate diffusible permissive factors that 
accelerate endogenous neurogenesis (65). These prelimi-
nary results support the idea that enhancing hippocam-
pal neurogenesis (pharmacologically or by way of cellular 
transplantation) can serve to boost or augment the antide-
pressant response. At the same time, impairments in the 
rates of neurogenesis do not appear to be involved in the 
core features of depression. Following cranial irradiation, 
mice are unimpaired across several indices of depression-
related behavior (60, 62). Consistent with its proposed role 
in hippocampal-dependent learning (57, 59), adult hippo-
campal neurogenesis may play a pathological role in the 
establishment of aversive memories of traumatic stressors 
and the sequelae of posttraumatic stress (66). As the fi eld 
struggles to clarify the functional relevance of these new 
neurons, stress-induced reductions in hippocampal pro-
liferation are best interpreted as a marker of hippocam-
pal plasticity (which may be impaired in some types of 
depression).

Another widespread endpoint for assaying the effects 
of stress, antidepressants, and genetic manipulations is 
the measurement of levels of brain-derived neurotrophic 
factor (BDNF) in the hippocampus. This practice, stem-
ming from the “neurotrophic hypothesis” of depression 
(67), is based on three main observations: an impairment 
of hippocampal BDNF signaling produces certain depres-
sion-related behaviors and impairs the actions of antide-
pressants (68–70), experimental increases in hippocampal 
BDNF levels produce antidepressant-like effects (71–73), 
and hippocampal BDNF levels are low in postmortem 
samples from depressed humans (6). BDNF is one of 
numerous growth factors that have been implicated in 
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Thus, to comprehensively describe and appreciate the 
intricacies of depression-related epigenetic plasticity, we 
can expect a continued evolution in molecular and bio-
informatic techniques. Rather than examining candidate 
genes such as those for BDNF and glucocorticoid recep-
tors, the fi eld has begun to transition toward genome-wide 
approaches to studying chromatin regulation (48), shifting 
the focus from “epigenetic marks” to “epigenomic signa-
tures.” As these technologies characterized in mouse and 
rat models begin to be applied to human postmortem 
tissue from depressed individuals (87), the ultimate goal 
would be to use transcriptional and epigenetic profi ling as 
biomarkers to distinguish clinical categories of depressive 
illness, to determine responsivity to various antidepres-
sant classes, and to differentiate treatment-sensitive from 
treatment-resistant illness. These profi les may offer new 
insights into subtype-specifi c pathophysiology and thera-
pies and aid in the validation of our current animal models.

Role of Dopaminergic Reward Circuits

The dramatic reinforcing properties of direct intra-
cranial self-stimulation in rodents led to the apprecia-
tion of a series of subcortical regions critical for reward 
and appetitive behavior (88). The two main structures 
implicated by intracranial self-stimulation are the lateral 
hypothalamus and medial forebrain bundle, the latter 
containing ascending dopaminergic projections from the 
ventral tegmental area to the nucleus accumbens (88). 
Under baseline conditions, dopaminergic neurons in the 
ventral tegmental area oscillate between tonic patterns 
of activity (low-frequency regular action potentials) and 
phasic activity patterns (bursts of action potentials) (89). 
Unexpected rewards produce a transient increase in pha-
sic fi ring (encoding a “reward prediction error”), which 
is suffi cient to reinforce antecedent behaviors (25). All 
major classes of abused drugs appear to “signal” a reward, 
at least in part, by artifi cially enhancing dopamine trans-
mission in the nucleus accumbens (for example, cocaine 
blocks the dopamine transporter) (88).

Given depression’s prominent features of anhedo-
nia and appetite alterations, this circuit has become an 
obvious focus of attention for basic molecular and elec-
trophysiological studies. In rodents, long-term antidepres-
sant administration reduces the fi ring rates of dopamine 
neurons in the ventral tegmental area (90). In contrast, 
psychosocial stressors activate fi ring in the ventral teg-
mental area and increase nucleus accumbens dopamine 
levels (13, 50, 91), and this may represent a positive coping 
strategy to enhance motivation during stressful situations 
(88). One mechanism for this enhanced excitability of the 
ventral tegmental area may be the reduced activation of 
the protein kinase AKT, which leads to reductions in local 
inhibitory neurotransmission (14). Variations in the neu-
roplastic adaptations expressed by these neurons may also 
contribute to individual differences in the responsiveness 

RNAs (such as microRNAs) that regulate gene expression 
(82). In changing DNA’s tertiary structure, they adjust inter-
actions between DNA and associated proteins such as tran-
scription factors and RNA polymerases, thereby ultimately 
altering levels of mRNA expressed by given genes. Patholog-
ical epigenetic events have been implicated in numerous 
chronic diseases, most notably cancer, in which aberrant 
epigenetic changes promote genetic instability (83).

Through combining animal models with an explosion 
of novel molecular tools, several epigenetic events have 
been linked to depression-related behavior and antide-
pressant action. In rats, offspring born to mothers that dis-
play low levels of maternal licking and grooming behavior 
display exaggerated corticosteroid responses to stress 
and increased anxiety, which are mediated in part by 
increased methylation (and subsequent repression) of the 
glucocorticoid receptor gene promoter in the hippocam-
pus. This type of epigenetic mark is stable to adulthood, 
reversed by chemical inhibitors of DNA methylation, and 
entirely dependent on the maternal behavior of the fos-
tering, rather than biological, mother (i.e., independent 
of germ-line transmission) (84). Early life stress applied 
to mice produces hypomethylation of the arginine vaso-
pressin (AVP) gene in the hypothalamic paraventricular 
nucleus, resulting in hypersecretion of AVP, pathologi-
cally enhanced serum corticosterone level, and increased 
depression-like behavior (85). Histone acetylation, a mark 
of active transcription, is increased at certain BDNF pro-
moters when socially defeated mice receive a course of 
chronic imipramine, and this hyperacetylation event is 
mediated by the down-regulation of histone deacetylase 
5 (HDAC5) (47). While overexpression of HDAC5 in the 
hippocampus counteracts the effects of antidepressants, 
mice that are globally defi cient in HDAC5 display an 
enhanced vulnerability to chronic stress (49).

These examples illustrate the complexity in translating 
these epigenetic changes into clinical phenomena: while 
certain perturbations robustly alter epigenetic marks on 
one gene in one brain region, other brain regions may have 
opposing changes at distinct genes. Furthermore, most 
enzymes affected by epigenetic changes occur in several 
isoforms, each with its own tissue specifi city and regula-
tory factors (e.g., HDAC5 is part of a family of 11 HDAC 
isoforms that are expressed across all major organ systems 
[86]), further complicating the development of selective 
small-molecule antagonists. In spite of this complexity, 
epigenetic modulators show some promise as treatments 
for depression. In animal models, systemically or locally 
administered HDAC inhibitors display antidepressant 
properties without obvious adverse effects on health (12, 
82), suggesting that HDAC inhibitors may function by 
modulating a global acetylation/deacetylation balance 
across several brain regions. Of course, histone acetylation 
functions in concert with several other markers of gene 
repression and activation, including histone methylation, 
phosphorylation, sumoylation, and ubiquitination (86). 
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example is the modulation of cAMP response element 
binding protein (CREB): while prolonged social isolation 
stress reduces CREB activity and generates a predomi-
nantly anxious phenotype (95), active stressors or drugs 
of abuse increase CREB activity and promote anhedonia 
in the presence of a host of natural and drug rewards (88). 
Neuroimaging studies with depressed humans show that 
quantitative indices of anhedonia are associated with low 
nucleus accumbens volume (96) as well as hypoactiva-
tion during simple tasks of incentive reward (97, 98). In an 
attempt to reverse this nucleus accumbens hypoactiva-
tion, bilateral deep brain stimulation to this and nearby 
regions has been successfully applied to several cases of 
treatment-resistant depression (Figure 3). Consistent with 
the centralized location of the stimulation, responders dis-
played normalized PET indices of activity in the nucleus 
accumbens and the larger ventral striatum, in addition to 
lower activity in the subgenual cingulate cortex and other 
prefrontal cortical regions (20, 21). In rats, deep brain 
stimulation applied to the nucleus accumbens with simul-
taneous electrophysiological recordings from multiple dis-
tant sites has suggested that the therapeutically relevant 

to stress. In the mouse social defeat paradigm, while stress-
susceptible mice display enhanced activity in the ventral 
tegmental area and subsequent BDNF release, stress-resil-
ient mice overcome this excitability change by up-regulat-
ing potassium channel subunits expressed by dopamine 
neurons in the ventral tegmental area that maintain nor-
mal tonic fi ring rates (13, 44). Stress-induced increases 
in nucleus accumbens BDNF may mediate pathological 
reward learning such that, following a series of aversive 
social encounters, the positive rewarding value of social 
interaction is now modifi ed to have a negative valence 
(1). Enhanced mesolimbic dopaminergic signaling may 
explain the reported effi cacy of antidopaminergic agents 
as adjunct antidepressants (92), and by enhancing basal 
dopaminergic and BDNF signaling, this model may also 
explain the signifi cant comorbidity of substance depen-
dence and depressive disorders (93, 94).

Nucleus accumbens neurons, anatomically situated to 
integrate reward-related dopaminergic signals as well as 
glutamatergic input from the prefrontal cortex, hippo-
campus, and amygdala (21), themselves display numer-
ous stress- and antidepressant-induced changes (88). One 

Leads of the 
stimulator

Extension

Implanted pulse 
generator (battery)

Precentral 
gyrus

Orbitofrontal 
cortex Nucleus 

accumbens

Superior 
frontal gyrus

Thalamus

Posterior 
cingulate

Subgenual 
cingulate

Caudate

Posterior 
cingulate

Subgenual 
cingulate

Orbitofrontal 
cortex

Precuneus

Medial frontal 
cortex

Dorsal frontal 
cortex

Decreased metabolic activity

Increased metabolic activity

A B

FIGURE 3. Effects of Deep Brain Stimulation on Brain Metabolic Activity in Treatment-Resistant Depressiona

a Part A: applied to the nucleus accumbens and nearby regions, deep brain stimulation produces signifi cant clinical improvement and changes 
in metabolic activity across an array of neural substrates (as measured by fl uorodeoxyglucose PET studies before and 6 months after implan-
tation of the stimulators) (19, 20). Among responders, reduced glucose metabolism (green shading) is observed in the orbitofrontal cortex, 
superior frontal gyrus, and posterior and subgenual cingulate cortical areas. Part B: the subgenual (also known as subcallosal) cingulate 
cortex is itself another target for deep brain stimulation in depression (18, 19), and poststimulation PET studies reveal similar patterns of 
decreases in frontal cortical metabolism. In addition, stimulation applied here normalizes the heightened blood fl ow to this region that is 
associated with depressive episodes (not shown). These data, together with results from rodent studies of deep brain stimulation (99), suggest 
that continuous stimulation in these areas may alleviate severe depressive symptoms by enhancing inhibition across a circuit of cortical and 
subcortical structures.
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112); 2) depressed patients with atypical features and 
victims of posttraumatic stress tend to display hypocor-
tisolemia (111, 113, 114); and 3) mice designed to display 
reduced central glucocorticoid receptor signaling (mim-
icking hypercortisolemic states) and those that centrally 
overexpress glucocorticoid receptors display identical 
behavioral and endocrinological phenotypes (115, 116). 
In spite of the strong immunosuppressant properties of 
glucocorticoids, levels of circulating proinfl ammatory 
cytokines (taken as a quantitative marker of systemic glu-
cocorticoid-receptor-mediated signaling) are usually ele-
vated in major depression (117); these cytokines include 
interleukin 1 (IL-1), IL-6, and tumor necrosis factor α. 
They are themselves suffi cient to impair glucocorticoid 
receptor signaling, and thus, rather than directly affecting 
HPA function, stress likely leads to glucocorticoid insuf-
fi ciency through cytokine intermediates (102). Under 
certain circumstances, this reduced glucocorticoid-recep-
tor-mediated signaling may promote hypercortisolemia, 
severe insomnia, and hypophagia (melancholic features) 
but in other conditions may lead to hypocortisolemia, 
hyperphagia, and fatigue (atypical features). Cytokines 
themselves play powerful roles in depression-related neu-
roplasticity: chronic stress produces signifi cant changes 
in immune function (118), and cytokines induce depres-
sion-like behavior when injected into rodents (119). IL-1β 
is one such cytokine: through the actions of the transcrip-
tion factor nuclear factor κB, stress-induced increases in 
IL-1β lead to reductions in hippocampal neurogenesis 
and anhedonic phenotypes (120).

The greater female predisposition to depression, as well 
as its greater incidence in postpartum and perimeno-
pausal periods, argue strongly for a thorough under-
standing of the role of gonadal hormones in affective 
regulation. The heightened female vulnerability to expe-
rience depressive episodes is limited to the postpubertal 
and premenopausal period, and accordingly, much of 
the fi eld’s emphasis has focused on the neurobiology of 
estrogen. Studies in rodent models have demonstrated 
that estrogen has antidepressant properties and also aug-
ments antidepressant actions of monoaminergic agents. 
Conversely, mice lacking aromatase (required for the 
generation of estrogenic steroids) or estrogen receptor β 
display aberrant stress-related behavior (121). Consistent 
with the broad central expression of estrogen receptor β, 
the antidepressant effects of estrogen signaling have been 
linked to several neurobiological substrates, including 
hippocampal neurogenesis, BDNF signaling, serotonergic 
neurotransmission, and HPA axis function (122).

While this body of evidence may explain how signifi -
cant fl uctuations in hormone levels can trigger depressive 
episodes, it does not account for the heightened female 
vulnerability to depression, which is likely as much about 
female vulnerability factors in responses to depressogenic 
stimuli as about male resiliency factors. For instance, in 
comparison to males, female rodents display passive cop-

effects are due to the synchronization of inhibition across 
a network of cortical and subcortical regions (99), possibly 
explaining anatomically distant effects of deep brain stim-
ulation. In this way, the application and validation of deep 
brain stimulation in depression models offers opportuni-
ties to improve our circuit models (Figure 1) and shed light 
on the neurobiological correlates of treatment resistance.

Sex, Steroids, and Immunity

The network of neural substrates involved in depres-
sion’s symptoms displays a remarkable degree of plasticity 
in response to a host of peripherally derived chemical 
stimuli, and advancing our understanding of the endocri-
nology and immunology of depression offers exciting ther-
apeutic avenues. Considerable research in the fi eld has 
focused on a central role of a pathologically dysregulated 
HPA axis (1), whereby stress-induced hypercortisolemia 
leads to the central down-regulation of glucocorticoid 
receptors, impairing cortisol’s negative feedback and 
enhancing levels of corticotropin-releasing hormone 
(CRH) and adrenocorticotrophic hormone (ACTH) (36). 
This vicious cycle sustains elevated cortisol levels, pos-
sibly leading to hippocampal atrophy and reduced rates 
of neurogenesis, as well as predisposing depressed indi-
viduals to insulin resistance and abdominal obesity (100, 
101). A large body of clinical and preclinical evidence sup-
ports this model. Depressed patients display dexametha-
sone nonsuppression that is reversed by antidepressant 
treatment (102), enhanced CSF levels of CRH (103), and 
alterations in diurnal cortisol rhythms (104). Mice that are 
treated chronically with glucocorticoids develop anhe-
donia in conjunction with other molecular correlates of 
depression (105). In line with these data, chronic gluco-
corticoid administration reduces hippocampal volume 
and impairs cognition in humans (106), while the glu-
cocorticoid receptor antagonist mifepristone improves 
psychotic and depressive symptoms in patients with 
psychotic major depression (107). Antagonizing CRH sig-
naling, particularly through the CRH1 receptor subtype, 
leads to strong anxiolytic effects in several rodent mod-
els (108). While the validation of CRH1 antagonists for 
depression and anxiety disorders remains an active area 
of clinical research, previously tested pharmacological 
prototypes have failed for a variety of reasons, including 
off-target hepatotoxicity (109, 110).

This “cortisol hypothesis” represents a vibrant part of 
the preclinical depression literature: with commercially 
available glucocorticoid immunoassays, experimental 
manipulations are often validated as being “prodepres-
sant” or “antidepressant” depending on their effects on 
baseline or stress-induced glucocorticoid levels. However, 
several key points argue for a reappraisal of this practice: 
1) true hypercortisolemia is rarely observed in outpatient 
depressed populations and may be associated only with 
depression severe enough to require hospitalization (111, 
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drive other behavioral traits that are relevant to depres-
sion, including habit formation, parental and aggressive 
behaviors, and social interaction (125, 126).

Mediators of Energy Homeostasis

The appetite and metabolic abnormalities associated 
with depression and depression-related entities range 
from severe hypophagia and anorexia to binge eating 
and obesity. A thorough understanding of such complex 
phenomena requires knowledge about physiologi-
cal mechanisms of energy homeostasis, which refers to 
processes that maintain equilibrium between caloric 
intake and energy expenditure. In mammals, this is 
achieved largely through the action of circulating hor-
mones that relay information about peripheral energy 
levels to the brain (127). Two such hormones that have 
received tremendous attention are leptin and ghrelin 
(Figure 5). Leptin is synthesized in white adipose tis-
sue and is secreted in times of nutritional excess. Many 
obese individuals display a hyperleptinemia associated 
with central leptin resistance (131). In contrast, ghrelin 
is synthesized by gastric fundus cells and released dur-
ing times of energy scarcity, and its secretion stimulates 
caloric intake and energy storage (127). The principal 
homeostatic site of action of leptin and ghrelin is the 
hypothalamic arcuate nucleus, where they exert anorexi-
genic and orexigenic effects, respectively, through a bio-
logically elegant system of neuropeptides. It is interesting 
that receptors for leptin and ghrelin and receptors for 
other feeding-related peptides (such as melanin-concen-
trating hormone, neuropeptide Y, agouti-related peptide, 
α-melanocyte-stimulating hormone, and orexin [hypo-
cretin]) are expressed in several depression-related lim-
bic substrates. In rodents, chronic stress decreases serum 
leptin levels (132) and increases serum ghrelin (46). The 
systemic administration of either hormone produces 
antidepressant effects on the forced-swim test, enhances 
hippocampal neurogenesis, and improves learning and 
memory in behavioral and cellular (i.e., long-term poten-
tiation) assays (46, 132–136). Whereas ghrelin and leptin 
have identical actions in the hippocampus, dopaminer-
gic neurons of the ventral tegmental area are excited by 
ghrelin and inhibited by leptin (130, 137, 138), which 
illustrates how their hypothalamic effects on appetite 
are complemented in the ventral tegmental area through 
opposite modulation of reward sensitivity.

In addition to persistent defi cits in social interaction 
and anhedonia, mice subjected to chronic social defeat 
stress display an initial weight loss followed by a prolonged 
hyperphagic phase, during which they rapidly regain their 
body weight and eventually gain more weight than do 
control or stress-resilient animals. This phenomenon is at 
least partially mediated by both reduced serum leptin lev-
els and central leptin resistance, which ultimately weaken 
central melanocortinergic signaling, i.e., through the 

ing strategies and a more pronounced HPA axis activa-
tion in response to a variety of stressors. These features 
can be “masculinized” by providing testosterone during 
puberty, demonstrating how gender differences in behav-
ioral physiology can be hardwired during certain critical 
periods (123). Ovariectomy also promotes active stress-
related coping, an effect that may be related to estrogen 
signaling within the nucleus accumbens (124). Aside from 
hormonal infl uences, it is important to recognize that 
gender differences also likely arise from numerous genes 
on sex chromosomes that are unrelated to gonadal func-
tion. Through standard genetic engineering techniques, 
one can create mice that are chromosomally male (i.e., 
XY) while having female gonads, and vice versa (Figure 4). 
Studies with this model have shown that while the devel-
opment and maturation of male copulatory behaviors and 
sexually dimorphic brain structures depend on gonadal 
output, other genes on sex chromosomes independently 
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FIGURE 4. Genetic Model for Studying Gender Differences 
in Depression-Related Behaviora

a The neurobiology underlying the greater female vulnerability to 
depression (or the relative resilience in males) remains largely un-
known. The vast majority of research in the fi eld has focused on 
how gonadal hormones (i.e., estrogens, progesterones, and testos-
terones) affect stress-related behavior. However, studies using the 
“four core genotypes” model shown here illustrate that important 
sexually dimorphic anatomic and behavioral traits are unrelated 
to gonadal output and are localized to the many genes contained 
on sex chromosomes. This mouse model was developed through a 
spontaneous mutation in the Y chromosome resulting in the loss of 
SRY (sex-determining region of the Y chromosome), effectively giv-
ing rise to gonadally female XY mice. The Sry gene was then subse-
quently inserted into an autosome, resulting in “XY– Sry” mice that 
remain gonadally and chromosomally male. Mating these males 
with standard XX females results in the four core genotypes, com-
parisons between which have allowed for a dissociation of chro-
mosomal and gonadal mediators of a variety of behavioral and 
physiological phenotypes (125). Studies using this model generally 
involve a gonadectomy prior to experimentation to control for con-
founds related to menstrual cycling in females.
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but worsens social defi cits (51), suggesting that enhanced 
β

3
-adrenergic signaling has an adaptive function at the 

expense of metabolic derangements.
Understanding the hedonic impact of homeostatic 

signals provides numerous targets for pharmaceutical 

melanocortin 4 receptor (Figure 5). This hypoleptinemia 
seems to be mediated by enhanced β

3
-adrenergic signal-

ing, which promotes sympathetically mediated lipolysis. 
Coadministration of β

3
-adrenergic antagonists during 

social defeat prevents the weight gain and reduced leptin 
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FIGURE 5. Mediators of Energy Homeostasis Implicated in Metabolic and Affective Illnessa

a Leptin (synthesized by white adipose tissue) and ghrelin (synthesized in the stomach) provide two canonical examples of how endocrine hor-
mones that signal information about peripheral energy state can also exert effects on depression-related behaviors. Leptin and ghrelin recep-
tors are expressed in the hypothalamic arcuate nucleus, which contains two main types of neurons, defi ned by their neuropeptides. These 
two neuronal types differentially express neuropeptides that act on the same melanocortin receptor (MC4R) with opposing effects: AgRP, an 
endogenous antagonist, and α-MSH, an endogenous agonist (α-MSH is a product of the POMC gene). AgRP neurons also express NPY, while 
α-MSH neurons also express CART. NPY and AgRP are orexigenic, while α-MSH and CART are anorexigenic. Leptin reduces food intake and 
increases energy expenditure by inhibiting NPY/AgRP-releasing neurons and exciting α-MSH/CART neurons. Ghrelin acts by promoting the 
release of NPY and AgRP. MC4Rs are expressed widely in the brain, and their reach includes the paraventricular nucleus (infl uencing the re-
lease of numerous neuropeptides, including corticotropin-releasing hormone and thyrotropin-releasing hormone), the lateral hypothalamus 
(containing MCH- and orexin-secreting neurons, which regulate food intake and arousal), and extrahypothalamic sites such as the nucleus 
accumbens and amygdala (where they are thought to infl uence mood regulation) (51, 128). Synthetic antagonists of MC4R are antidepressant 
and anxiolytic (129), as are agonists of NPY (122). In the ventral tegmental area, direct infusions of leptin and ghrelin exert opposing effects 
on food intake through their contrasting effects on dopaminergic neuronal fi ring. Their actions in the ventral tegmental area are believed to 
control the motivational or hedonic aspects of food intake (130) and are likely altered in other reward-related disorders, such as depression 
and substance dependence. In contrast to their effects in the ventral tegmental area, leptin and ghrelin appear to have identical effects on 
hippocampal plasticity: they both positively modulate long-term potentiation (an electrophysiological assay for activity-dependent synapse 
strengthening) and enhance adult hippocampal neurogenesis through receptors expressed on hippocampal progenitor cells. (Diagram of 
hippocampal plasticity comes from Eisch et al. [59] and is used by permission of the Society for Neuroscience.)
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sumably are a negligible contribution to clinical depres-
sion. As progress in delineating the genetics of depression 
continues, it will be crucial to complement knockout stud-
ies by examining molecular and epigenetic mechanisms 
underlying individual variability and understanding the 
cellular and physiological consequences of psychiatri-
cally relevant human SNPs. Finally, pathological valida-
tion using postmortem brain tissue provides a crucial link 
between our inherently limited laboratory models and the 
molecular enigmas of human depression.

Human studies must also mature. Observational stud-
ies that measure serum BDNF or glucocorticoid levels 
can expand to include multiple measures such as serum 
leptin, ghrelin, and thyroid hormone levels and metabolic 
status, to name just a few, as well as segregating patients 
into depressive subtypes. Brain imaging experiments 
continue to largely focus on volume or activity measures 
of particular brain regions or on monoamine receptor/
transporter occupancy. It is essential to vastly expand the 
range of proteins that can be assessed in the living brain 
so that proteins at the heart of pathophysiological models 
in rodents can at last be analyzed in depressed patients. 
As informed clinicians and scientists in the fi eld, we have 
a responsibility to expand the horizon of our investiga-
tions and constantly reassess our analytic methods and 
theoretical paradigms. We should look well beyond mono-
amines, cortisol, BDNF, and the hippocampus to deter-
mine tomorrow’s novel medical and surgical therapeutic 
avenues for depression.
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